响石潭
医学硕士,不为良相则为良医,不为良医则为良相。
中数,又称中点数,中位数。符号为Md或Mdn(英文为Median),中数是指位于一组数据中较大一半与较小一半中间位置的那个数。这个数可能是数据中的某一个,也可能根本不是原有的数。如果将数据依大小顺序排列,中数恰于中间,它将数据的数目分成较大的一半和较小的一半。中数是集中量数的一种,它能描述一组数据的典型情况,在心理与教育研究工作中常有应用。 中数的求法根据数据是否分组,而有不同的方法。 (一)未分组数据求中数的方法 根据中数的概念,首先将数据依其取值大小排列成序,然后找出位于中间的那个数,就是中数。这里又有两种不同的情况: 1.单列数目的情况。所谓单列数目是指一组数据中没有相同的,这时取处于序列中间位置的那个数为中数:如果数据个数为奇数,则取序列为第(N+1)/2的那个数据为中数。如果数据个数为偶数,则取序列为第N/2与第N/2+1个这两个数据的均数为中数。 例1 有下列9个数,依大小排列为: 4、7、8、9、10、11、12、13、14 (N=9) (N+1)/2=5,序列第五的数据是10,则该组数据的中数是10。 例2 有下列8个数,依大小排列为: 2、3、5、7、8、10、15、19 (N=8) 序列为N/2 = 4者是7,序列为N/2+1=5者为8,则其中数为(7+8)/2=7.5。 从以上两例可以看出,求中数不受极大值与极小值的影响,而决定中数的关键是居中的那几个数据的数值大小。 2.有重复数目的情况。所谓重复数目是指一组数据中有数值相同的数。这时计算中数的方法基本同单列数目,但当位于中间的那几个数是重复数目时,求中数的方法就比较复杂了。具体算法如下: 首先假设位于中间的几个重复数目为连续数目,取序列中上下各N/2那一点上的数值为中数。 例3 有以下重复数列(N=9)依大小排序: 2、3、5、5、7、7、7、11、13,居中的数是7,但7是重复数,这时要将7视作连续数。N/2是4.5,序列中上下各4.5的那一点恰是第一个7(即序列为5的那个7)的中点,而这个7的中点如何确定呢?我们知道将7视作连续数可以理解为:6.5—7.5之间有三个数据分布其中,而这三个7是均匀分布在这区间之内的,可用图示如下:
|