响石潭 给我留言 | 地图 | 日志 | 帮助
医学统计
标准差的应用
来源:响石潭 日期:2010-04-15 11:14:51 标签:医学统计 中医

()差异系数(Coefficient of variation)

当所观测的样本水平比较接近,而且是对同一个特质使用同一种测量工具进行测量时,要比较不同样本之间离散程度的大小,一般可直接比较标准差或方差的大小-标准差的值大说明该组数据较分散,若标准差小,则说明该组数据较集中。标准差的单位与原数据的单位相同,因而有时称它为绝对差异量。在对不同样本的观测结果的离散程度进行比较时,常会遇到下述情况:①两个或多个样本所测的特质不同,即所使用的观测工具不同,如何比较其离散程度?②即使使用的是同+种观测工具,但样本的水平相差较大时,如何比较它们的离散程度?在第一种情况下,标准差的单位不同,显然不能直接比较标准差的大小。第二种情况虽然标准差的单位相同,但两样本的水平不同,这可从平均数的大小明显不同确定。通常情况下,平均数的值较大,其标准差的值一般也较大,平均数的值较小,其标准差的值也较小。这种情况下,若直接比较标准差取值的大小,借以比较不同样本的分散情况是无意义的。可见,上述两种情况下,若用绝对差异量进行直接比较以确定其分散程度的大小是不行的,这时可用相对差异量进行比较。最常用的相对差异量就是差异系数。差异系数,.又称变异系数、相对标准差等,通常用符号CV表示,其计算如下,

CV=S / M * 100                  (35)     

式中S为某样本的标准差

M为该样本的平均数。

差异系数在心理与教育研究中常用于:①同一团体不同观测值离散程度的比较,②对于水平相差较大,但进行的是同一种观测的各种团体,进行观测值离散程度的比较。

2    已知某小学一年级学生的平均体重为25公斤,体重的标准差是3.7公斤,平均身高110厘米,标准差为6.2厘米,问体重与身高的离散程度哪个大?

解: CV体重3.7 / 25 * 100%=14.8

     CV身高6.2 / 110 * 100%=5.64

通过比较差异系数可知,体重的分散程度比身高的分散程度大(14.8>5.64)


© 响石潭医生 始于2008隆冬 ChinaDoctor 中国▪四川省古蜀不可斋 进入响石潭前必读 蜀ICP备08110769号